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Overview

Timeline Barriers
* Project start date: Feb 1, 2017 e Co-optimization of fuels and
 Project end date: Jan 31, 2020 engines

* Percent complete: 35% e Lack of fundamental

knowledge of advanced

Budget engine combustion regimes

* Total project funding e Lack of effective engine

~ 2630,493 controls

— DOE share: $567,301

— Cost share: $63,192 Partners
e Funding received in FY 2017 : :

_ $198252 Sandia National Laboratory
e Funding for FY 2018 * Argonne National Laboratory

— $180,642
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Project Objectives

Experimental Goal:

e Acquire repeatable fuel-air mixing and combustion data using a constant
pressure flow rig (CPFR)

 Implement multiple time-resolved optical diagnostics techniques
simultaneously at diesel operating temperatures and pressures.

e Acquire experimental measurements to determine combustion properties
of biofuels and blends

e Facilitate leaner lifted flame combustion in ACl engines.

Modeling Goal:
 Develop correlations between fuel properties and combustion properties

* Eventually develop a neural network based fuel property prediction tool
for ACl engines.

Address Sub-topic Area 1: Fuel Characterization and Fuel Property Prediction
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Project Approach

Experiment Setup and Measurement Processing Development: Initial
diagnostic integration into the existing constant pressure flow rig (CFR) as
well as development of the data processing techniques will be
completed. Additionally, assessment of potential modeling approaches
(functional relations versus neural network) will be conducted.

Single component fuel testing and model development: Single
component fuel experiments and model development based on initial
survey will be completed. Specific experimental conditions (and fuels) will
be chosen based on discussions with DOE National Lab partner.

Multi-component fuel testing and blending rule development:
Experiments and blending models for multicomponent fuels will be
completed. Finally, the tools developed will be used to identify a
preliminary candidate fuel optimized for use in ACl engines.
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Milestones

2017 Milestone Type . Descripton

The existing spray chamber will be augmented with the
Optical Setup Complete Technical additional diagnostics, chemiluminescence and two-color
pyrometry, and the data capture synchronized.

Identified potential fuel properties to test for relation to

Fuel Property Combustion

. " Technical combustion properties. This includes supercritical fuel

Indicators Identified

property effects.

Completed development of image processing codes to
Image Processing Codes . p . P . Eep B

Technical provide synchronized spatial and temporal

Complete

measurements.

Decision between functional model and neural network
Modelling approach decision Go/No Go will be made at end of Budget Period 1. This will guide

model development in remainder of project.

2018 Milestone Type Description
Initial Model Structure . Based on fuel properties and combustion properties and
Technical . .. .
Developed initial model structure will be completed

Spray tests of single component fuels will be completed to
support model development

Completed Single Fuel Testing Technical

Petroleum based fuel models . Models for single component petroleum based fuels will be
Technical
created created

Single Fuel Models Completed Go/No Go SlngI(_e component combustlc_)n property models (petroleum
and bio based) completed with acceptable accuracy
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Project Accomplishments

Obtained baseline measurements in Constant Pressure Flow Rig for
a baseline conditions using Rainbow Schlieren Deflectometry (RSD)
Technique, and developed data processing techniques.

Developed a two-color pyrometry system, and associated
calibration and image processing techniques

Tested time-resolved OH* chemiluminescence system, and
developed imaging processing techniques

Integrated the three diagnostics systems for simultaneous use in
the constant pressure flow rig (CPFR)

Evaluated functional model and neural network model approaches
and decided to pursue neutral network model approach.

Developed a trial neural network model for liquid penetration
length using ECN experimental dataset.
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Differing Spray Regimes

Conventional, Subcritical Processes Supercritical Processes
Internal Cavitation—___ .. " Dense Spray Internal Cavitation—___ Dense Fluid
Primary Breakup ——— [} &~ Regime Compressed - Regime

o Liquid Core
Atomization ——> ' @8- TR

Turbulent Diffusion -

Secondary Breakup —> Dominated Mixing =

Particle Coalescence —

: Significant

Turbulent Dispersion — — Thermodynamic — -
. | . Non-idealities .

Dilute Spray and

i Regime Transport

Air-Fuel Mixing — 4 - Anomalies

Ideal Gas

Vaporization —— .
P - Regime
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Constant Pressure Flow Rig (CPFR)

- ———— - Injector

Continuous flow of Coolentiniel === 33~ ===~ = Coolantext
Compressed | — — Injector cooling
preheated air Air Exit Annulus 2 J — Jacket
Bosch CRIN3-18 |
Injector, axial 100  '00mmOpticalaccess - ~FERE 1}
um orifice e\

. — . 63mm Air Flow

12 injections per
minute
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Lean Lifted Flame Combustion
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Optical Diagnostics
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Rainbow Schlieren Deflectometry (RSD)

Pulsed Broadband LED

B ¥ R TR

Fuel Injector
Collimatinglens  (chamber not shown) DecollimatingLens

Source Aperture
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Rainbow Schlieren Deflectometry
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Test Conditions

— n-heptane

— Fuel supply pressure of 1000 bar

— Chamber air temperature of 825 K (T ., = 540 K)
— Chamber pressure of 28 bar (P; = 27.4 bar)

— Schlieren field of view is about 60 mm

— Imaging Setup (Phantom v611)

* Exposure time: 4 us
* Framing rate: 40 kHz
e Spatial resolution 100 um/px
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Sample High-speed Video Imaging

These results are captured with small backlight on injector

THE UNIVERSITY OF ALABAMA®






RSD Video
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Schlieren Analysis

|
|
|
|
Instantaneous radial deflection angle at a transverse location ‘X’ is given as

e(x,t) = [ 2 (x,y,)dy

Where § = (— — 1) is the normalized refractive index difference, n is local
refractive mdex and n_ is ambient refractive index.

For small deflection angles g(x, t)=d(x,t)/f

Here transverse displacement d(x,t) is related to hue or color
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Rainbow Filter Calibration
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e Deflected rays pass through different colors on the filter.

* Filter serves as a ruler to measure the deflection of light rays, which
is related to density or equivalence ratio.
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Ralo Schlleren Images
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Time Evolution
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Radial Profiles
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Integrated Diagnostics Setup

Additional Diagnostics include:
Two-color soot pyrometry
OH* Chemiluminescence

All three diagnostics have been integrated and synchronized by
imaging a simple methane Bunsen burner flame.

The integrated systems is now ready for use with CFPR.
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Integrated Diagnostics Setup

«—— Schlieren
Camera

Pyrometry

Camera Chemiluminescence

Camera

— The Pyrometer and Chemiluminescence camera are set at
angles on either side of the Schlieren light source
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Two-Color Pyrometry

550nm
Bandpass

M1-88013

650nm
Bandpass

4 90° Turning
b N Mirrors 1§
Radiation from the flame passes through a 50-50 beam splitter, a series of mirrors,
and bandpass filters to yield an image on the camera sensor at each wavelength
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Two-Color Pyrometry Principles

200 Camera Intensity vs Temperature at )\1
c ‘ ‘ ‘
’ . — 1 —2us
— Planck’s Law: E}, 3 = 2 o ||—=
/15 [e A'T _1] s 10US
200 | 15us
— Emissivity for a non-blackbody: =
o 150 |
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OH* Chemiluminescence

Photron Invisible Vision UVi 315nm Single-Band
FASTCAM SA5 Camera Intensifier Band Pass Filter
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OH* Chemiluminescence

Steady CH, Flame Test

Normalized Intensity of OH Chemiluminescence
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- Gain: 50%

- Cropped Resolution: 297x301

- Recorded Resolution: 1024x1024
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Synchronized Image Acquisition
Steady CH, Flame Test
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Model Development Progress

We quickly decided to pursue a neural network type model.
Ultimate goal will be to develop model of the general form:

Fuel Properties
Combustion Properties = f | Injection Properties
Ambient Properties

To that end we have done initial exploration and proof of
concept by developing a neural network that can replicate the
predictions of the Siebers Liquid Length Model.

This network has been developed with the full set of Engine
Combustion Network data that included liquid length.
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Neural Network Structure

input layer
hidden layer 1 hidden layer 2

2
1 + e—2(G+Wia+W,b+Wsc)

1

Equation for each connection: d =

Terminology

— Input Layer: Each node represents raw data for an independent variable

— Hidden Layers: Node values are calculated based on the previous layer

— Output Layer: Nodes in the output layer represent the dependent variables

— Connections and Weights: Nodes are connected to each node in the subsequent layer via
an activation function with a weight (W) and offset (G)

— Activation Function: The activation function for a connection defines the response of the
second node in the connection to a change in the first node in the connection
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Neural Network Implementation
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— Matlab neural network toolbox allows fast training with flexible network
structure

— Proof-of-concept tests were conducted using ECN data to predict liquid length
from bulk density, bulk temperature, fuel density, and nozzle diameter

— Unnecessarily complex network structures were found to produce unwanted
behavior between data-dense areas in graphs

— Through trial and error, a network structure of two hidden layers with six nodes
each was found to work best during this initial exploration.
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Neural Network Training

4. Neural Network Training Performance (plotperform), Epoch 13, Validatic... — 4. Meural Network Training Errer Histogram (ploterrhist), Epoch 15, Validati... — [m| X
File Edit View |Insert Tools Desktop Window Help L File Edit View |Inset Tools Desktop Window Help
Best Validation Performance is 0.81067 at epoch 9 Error Histogram with 20 Bins
10* ; 251
m——Train
e 20
= | NN e
w
=
L 10° @15
: :
=
= :
=
o =0
=
©
=]
@
0
g 10 5l
©
1]
=
0
.10-2 L i L ‘ T T T
0 5 10 15 Errors = Targets - Outputs

15 Epochs

— Experimental variation in data can cause non-physical behavior
in the network, known as overfitting

— 15% of data is set aside for validation, and 15% for testing

— The network is trained on the remaining 70% of the dataset,
and stops when it no longer improves for the validation data

— The test data is used to check for excessive error
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Remaining Challenges and Barriers

e |dentified potential fuel properties to test for relation to
combustion properties. This includes supercritical fuel property
effects.

e Spray tests of single component fuels will be completed to support
model development

e Based on fuel properties and combustion properties an initial
model structure will be completed

e Models for single component petroleum based fuels will be created

e Combustion properties that change non-linearly will be identified
for more complex modeling development

 Model will be developed for predicting non-linear properties for
fuel blends

e Blended fuels property models validated with acceptable accuracy
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Proposed Future Research

Conduct preliminary and baseline experiments in the
modified CPFR

Conduct parametric experimental study

Evaluate the proposed EE approach with real-fluid model
using an open source CFD code

Evaluate the proposed EE approach with real-fluid model
using a commercial CFD code

Integrate the developed models into a commercial CFD
code and perform validation and demonstration studies

Document and disseminate validated source codes
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Summary

Relevance

This project will acquire
experimental data, and develop
property models to accuracy model
fuel-air mixing at supercritical
conditions for diesel application
using open source and commercial
CFD codes

Approach

Innovative rainbow schlieren
deflectometry optical diagnostics
technique is used to acquire
guantitative data in a constant
pressure flow rig

Detailed models to calculate
thermodynamic properties are
developed and implemented in CFD
software, and validated.

Technical Accomplishments

Developed and validated fluid
property models using NIST database

Identified test case, and coordinated
to implement property models in CFD
code

Designed and constructed a constant
pressure flow rig

Implemented and validated schlieren
diagnostics techniques

Future Work

Implement property models in CFD
software

Acquire test data in the flow rig

Compare experimental and model
results to resolve any discrepancies

Conduct parametric analysis
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Collaboration and Coordination

This projects builds on expertise in high speed diagnostics and
experimental capabilities at The University of Alabama.
UA is providing expertise in two areas:
— Experimentation and optical diagnostics in a constant pressure flow rig
— Neural network models to predict combustion properties

As part of Co-optima project we partner with Sandia National Lab.

— Partnership with Chuck Mueller to enable fuel selection and coordinate
experiments activities.

— We consult with both Chuck Mueller and Lyle Pickett to ensure safe and reliable
operation of the test chamber.

— Engagement with ECN

Additional collaboration with Sibendu Som (Argonne) to support
prediction and validation of computational fluid dynamics models.

UA Investigators hold weekly meetings with students to guide their
efforts and work directly with students to ensure rigorous treatment of
all aspects of the project.
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Remaining Challenges and Barriers

e |dentify potential fuels and fuel properties for experiments.
e Determine key combustion properties based on experiments
 Conduct experiments over a range of test conditions

 Develop reliable neural network model structure and models
for

— single component fuels
— Multi-component fuels

e Blended fuels property models validated with acceptable
accuracy would be a challenge
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Proposed Future Research

Conduct preliminary and baseline experiments using the
three diagnostics techniques simultaneously.

Post-process experimental results to obtain combustion
properties of relevance for single component fuels (both
petroleum- and bio-based fuels).

Develop neural network models to relate fuel and combustion
properties.

Conduct experiments to obtain combustion properties for
multi-component fuels.

Extend and validate neural network models for multi-
component fuels.

Disseminate experimental results and models.
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Summary

Technical Accomplishments

Relevance

This project will provide experimental data,
and develop combustion property
prediction models to support larger Co-
Optima effort of targeting fuels that
promote specific combustion relevant
outcomes (i.e. low soot, etc.)

Approach

Rainbow schlieren deflectometry (RSD),
two-color pyrometry, and OH*
chemiluminescence optical diagnostics
techniques are used with high temporal
resolution to acquire quantitative mixing,
ignition, and soot measurementsin a
constant pressure flow rig (CPFR)

Neural Network (NN) models are used to
predict combustion properties for different
fuels, injection, and ambient conditions.

Acquired RSD measurements in a reacting
fuel spray at diesel conditions.

Developed a two-color (2C) pyrometer
system and calibration methods.

Integrated RSD, OH* chemiluminescence,
and two-color pyrometer for
simultaneous image acquisition.

Developed proof of concept for NN
models to predict liquid length using ECN
database.

Future Work

Complete baseline testing and synchronous
image acquisition with 3 diagnostics
techniques using CPFR.

Formalize data aggregation methods.
Complete parametric fuels testing
Complete model development
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Technical Backup Slides
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Time Averaging

Average transverse deflection angle is related to average refractive index
gradient

do
(0 0) = [ 5 Gy, 0dy
glx,t) = &(x) + £'(x, t)

5(x,y,t) =8(x,y) + 8 (x,y,t)

_ , (0 :
E(x)+ e (x,t) =J a((ﬁ(x,y) +0'(x,y, t)dy

Ex)+e'(xt) =

(3 (s ,
| 328y +68'(x,y,t) dy

gx,t)=0 5'(x,y,t) =0
_ J -
£(x) = 5(5(% y))dy
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Determination of Local Properties

Starting with

For a mixture of gases (vapor region),

- o . _ refractive index is sum of the product of all
E(x) = e (5(95» y))dy species Gladstone-Dale constant and

_ , partial density.
and, after conversion to radial

coordinates and Abel inversion gives a n=ny,(8+1)= z KiPi = Kair g

l

solution for & as

Pairxair

+K'fpf

e Mixture refractive index is a unique

_1 (R
S(r) = _1J £(x) dx function of mixture fraction and
T Jy Vx2 —1r? temperature
which can be discretized to » Determined based on a simple adiabatic
g(ri) _ Z Dy; & mixing (no chemistry) model.

ﬁ Constant
Pressure
Adiabatic

m Mixing

Ry
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Determination of Local Properties

An indication of mixture ignitability
is considered from simple PSR
simulations at pairs of ¢,T

mix*

For a measured refractive index
difference, corresponding local
properties are interpolated.

Uncertainties currently based on
simplified propagation of image hue
to refractive index

10° e

Equiv. Ratio [-], Ign. Delay [ms]

Normalized Refractive Index Difference
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